segunda-feira, 27 de junho de 2016

Mecânica/Física Quântica



Mecânica/Física Quântica

"Qualquer um que não se choque com a Mecânica Quântica é porque não a entendeu."
(Niels Bohr)

"Fé e razão são como a dualidade-onda partícula:
pode-se ter as duas coisas, mas nunca ao mesmo tempo."
(Alberto Präss) 

A Mecânica Quântica (Física Quântica) é a teoria Física que obtém sucesso no estudo dos sistemas físicos cujas dimensões são próximas ou abaixo da escala atômica, tais como moléculas, átomos, elétrons, prótons e de outras partículas subatômicas, muito embora também possa descrever fenômenos macroscópicos em diversos casos. A Mecânica Quântica é um ramo fundamental da Física com vasta aplicação.
A teoria quântica fornece descrições precisas para muitos fenômenos previamente inexplicados tais como a radiação de corpo negro e as órbitas estáveis do elétron. Apesar de na maioria dos casos a Mecânica Quântica ser relevante para descrever sistemas microscópicos, os seus efeitos específicos não são somente perceptíveis em tal escala. Por exemplo, a explicação de fenômenos macroscópicos como a super fluidez e a supercondutividade só é possível se considerarmos que o comportamento microscópico da matéria é quântico.
A quantidade característica da teoria, que determina quando ela é necessária para a descrição de um fenômeno, é a chamada constante de Planck, que tem dimensão de momento angular ou, equivalentemente, de ação.
A Mecânica Quântica recebe esse nome por prever um fenômeno bastante conhecido dos físicos: a quantização. No caso dos estados ligados (por exemplo, um elétron orbitando em torno de um núcleo positivo) a Mecânica Quântica prevê que a energia (do elétron) deve ser quantizada. Este fenômeno é completamente alheio ao que prevê a teoria clássica.

Um panorama

A palavra "quântica" (do Latim, quantum) quer dizer quantidade. Na Mecânica Quântica, esta palavra refere-se a uma unidade discreta que a teoria quântica atribui a certas quantidades Físicas, como a energia de um elétron contido num átomo em repouso. A descoberta de que as ondas eletromagnéticas podem ser explicadas como uma emissão de pacotes de energia (chamados quanta) conduziu ao ramo da ciência que lida com sistemas moleculares,atômicos e subatômicos. Este ramo da ciência é atualmente conhecido como Mecânica Quântica.
A Mecânica Quântica é a base teórica e experimental de vários campos da Física e da Química, incluindo a Física da matéria condensada, Física do estado sólido, Física atômica, Física molecular, química computacional, química quântica, Física de partículas, e Física nuclear. Os alicerces da Mecânica Quântica foram estabelecidos durante a primeira metade do século XX por Albert Einstein, Werner Heisenberg, Max Planck, Louis de Broglie, Niels Bohr, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, Richard Feynman e outros. Alguns aspectos fundamentais da contribuição desses autores ainda são alvo de investigação.
Normalmente é necessário utilizar a Mecânica Quântica para compreender o comportamento de sistemas em escala atômica ou molecular. Por exemplo, se a mecânica clássica governasse o funcionamento de um átomo, o modelo planetário do átomo – proposto pela primeira vez por Rutherford – seria um modelo completamente instável. Segundo a teoria eletromagnética clássica, toda a carga elétrica acelerada emite radiação. Por outro lado, o processo de emissão de radiação consome a energia da partícula. Dessa forma, o elétron, enquanto caminha na sua órbita, perderia energia continuamente até colapsar contra o núcleo positivo!

Interpretações da Mecânica Quântica

Uma interpretação da Mecânica Quântica é uma tentativa de responder a questão: Sobre o que trata exatamente a Mecânica Quântica? A questão têm as suas raízes históricas na natureza mesma da Mecânica Quântica, que desde um princípio foi considerada como uma teoria radicalmente diferente das teorias Físicas precedentes. Porém, a Mecânica Quântica têm sido descrita como a teoria "mais comprovada e de maior sucesso na história da ciência"
Mecânica Quântica, como uma teoria científica, tem sido muito bem sucedida em prever resultados experimentais. Isto significa, primeiro, que há uma correspondência bem definida entre os elementos do formalismo (matemático, abstrato) e os procedimentos experimentais e, em segundo lugar, que os resultado obtidos neste experimentos estão extremamente de acordo com o formalismo. Além disso, que as questões básicas de que o que significa a Mecânica Quântica são ainda uma proposta em si mesmas e requerem algumas explicações.
O entendimento da estrutura matemática da teoria trilhou vários estágios preliminares de desenvolvimento. Por exemplo, Schrödinger de início não entendeu a natureza probabilística da função de onda associada ao elétron; Foi Max Born que propôs uma interpretação de uma distribuição de probabilidade no espaço para a posição do elétron. Outros cientistas de destaque, tais como Albert Einstein, tiveram grande dificuldade em concordar com a teoria. Mesmo se estes pontos forem tratados como problemas menores, eles têm grande importância para atividades de interpretação.
Disto não se deve, porém, presumir que a maioria dos físicos considere que a Mecânica Quântica necessite de uma interpretação, além das mínimas fornecidas pela interpretação instrumentalista, as quais serão discutidas abaixo. A interpretação de Copenhague, no ano de 2005, ainda parecia ser a mais popular entre os cientistas (seguida pelas histórias consistentes e interpretação de muitos mundos). Mas também é verdade que a maioria dos fisicos considera que questões não instrumentais (em particular questões ontológicas) sejam irrelevantes para a Física. Eles remetem ao ponto de vista de Paul Dirac, depois expresso em um famoso ditado: "Cale-se e calcule" frequentemente (talvez erroneamente) atribuído a Richard Feynman.

Física Quântica No dia-a-dia
Há pouco mais de cem anos, o físico Max Planck, considerado conservador, tentando compreender a energia irradiada pelo espectro da radiação térmica, expressa como ondas eletromagnéticas produzidas por qualquer organismo emissor de calor, a uma temperatura x, chegou, depois de muitas experiências e cálculos, à revolucionária ‘constante de Planck’, que subverteu os princípios da física clássica.
Este foi o início da trajetória da Física ou Mecânica Quântica, que estuda os eventos que transcorrem nas camadas atômicas e sub-atômicas, ou seja, entre as moléculas, átomos, elétrons, prótons, pósitrons, e outras partículas. Planck criou uma fórmula que se interpunha justamente entre a Lei de Wien – para baixas freqüências – e a Lei de Rayleight – para altas freqüências -, ao contrário das experiências tentadas até então por outros estudiosos.
Albert Einsten, criador da Teoria da Relatividade, foi o primeiro a utilizar a expressão quantum para a constante de Planck E = hv, em uma pesquisa publicada em março de 1905 sobre as conseqüências dos fenômenos fotoelétricos, quando desenvolveu o conceito de fóton. Este termo se relaciona a um evento físico muito comum, a quantização – um elétron passa de uma energia mínima para o nível posterior, se for aquecido, mas jamais passará por estágios intermediários, proibidos para ele, neste caso a energia está quantizada, a partícula realizou um salto energético de um valor para outro. Este conceito é fundamental para se compreender a importância da física quântica.
Seus resultados são mais evidentes na esfera macroscópica do que na microscópica, embora os efeitos percebidos no campo mais visível dependam das atitudes quânticas reveladas pelos fenômenos que ocorrem nos níveis abaixo da escala atômica. Esta teoria revolucionou a arena das idéias não só no âmbito das Ciências Exatas, mas também no das discussões filosóficas vigentes no século XX.
No dia-a-dia, mesmo sem termos conhecimento sobre a Física Quântica, temos em nossa esfera de consumo muitos de seus resultados concretos, como o aparelho de CD, o controle remoto, os equipamentos hospitalares de ressonância magnética, até mesmo o famoso computador.
A Física Quântica envolve conceitos como os de partícula – objeto com uma mínima dimensão de massa, que compõe corpos maiores - e onda – a radiação eletromagnética, invisível para nós, não necessita de um ambiente material para se propagar, e sim do espaço vazio. Enquanto as partículas tinham seu movimento analisado pela mecânica de Newton, as radiações das ondas eletromagnéticas eram descritas pelas equações de Maxwell. No início do século XX, porém, algumas pesquisas apresentaram contradições reveladoras, demonstrando que os comportamentos de ambas podem não ser assim tão diferentes uns dos outros. Foram essas idéias que levaram Max Planck à descoberta dos mecanismos da Física Quântica, embora ele não pretendesse se desligar dos conceitos da Física Clássica.
Físicos como o indiano Amit Goswami se valem dos conceitos da Física moderna para apresentar provas científicas da existência da imortalidade, da reencarnação e da vida após a morte. Professor titular da Universidade de Física de Oregon, Ph.D em física quântica, físico residente no Institute of Noetic Sciences, suas idéias aparecem no filme Quem somos nós? e em obras como A Física da Alma, O Médico Quântico, entre outras. Ele defende a conciliação entre física quântica, espiritualidade, medicina, filosofia e estudos sobre a consciência. Seus livros estão repletos de descrições técnicas, objetivas, científicas, o que tem silenciado seus detratores.

Na física quântica, o futuro define o passado 

Um experimento científico mostra que, na física quântica, o futuro define o passado. O conceito invertido de tempo se dá por conta das características de partículas minúsculas, como o fóton, uma partícula de luz. A ciência já provou há muito tempo, no teste de dupla fenda, que o fóton pode ter, ao mesmo tempo, forma de partícula e de onda. Isso foi registrado visualmente pela primeira vez no começo deste ano. O que ainda intriga os pesquisadores é em qual momento o fóton escolhe seu formato.
Buscando essa resposta, cientistas australianos realizaram um teste parecido com o feito com o fóton por Thomas Young, mas usando átomos de hélio. Diferentemente dos fótons, o átomo de hélio tem massa e, por isso, interage com campos elétricos.
A expectativa era que o átomo se comportasse como a partícula de luz, o que significa que ele teria de assumir tanto a forma de uma partícula como a de uma onda. Os átomos foram disparados em duas grelhas semelhantes criadas por laser, embora o efeito tenha sido semelhante ao de uma grelha sólida. Só que a segunda grelha só foi posta em funcionamento depois que o átomo passou através da primeira. E a segunda grelha não foi aplicada em todos os momentos, mas, sim, de forma aleatória, justamente para ver como as partículas reagiriam em cenários diferentes. O exemplo a seguir mostra um fóton, mas o processo usado nesse experimento é semelhante. Confira.

A descoberta foi que, quando havia duas grades, o átomo passou por elas em muitos caminhos em forma de onda, mas, quando a segunda grelha foi removida, ele se comportou como uma partícula e tomou apenas um caminho.
Portanto, a forma que ele assumiria na primeira grelha dependia da segunda grelha. Não foi decidido qual seria sua forma até que ele passasse pela barreira secundária. De certa forma, o tempo anda para trás nessa situação. A relação de causa e efeito está invertida. O futuro define o passado.
"Um evento futuro faz com que o fóton decidida seu passado, segundo o professor Andrew Truscott, que liderou o grupo responsável pelo estudo na Universidade Nacional da Austrália.
Tudo que aconteceu até que o evento quântico fosse observado e medido estava em um estado suspenso, como se o átomo não tivesse escolhido qual forma assumir. 
Se você achou o tema desta matéria complicado demais, você não está só. Albert Einstein já chamou a física quântica de assustadora e Niels Bohr, um dos pioneiros da física teórica, chegou a afirmar uma vez que se a mecânica quântica não chocou você profundamente, você ainda não a entendeu. No entanto, há uma série de links ao longo do texto para que você possa se aprofundar no tema, caso busque um entendimento mais completo do assunto.
Por Ana Lucia Santana, Lucas Agrela
Fonte:www.infoescola.com
Fonte: Digital Journal
Fonte: Wikipédia
Gaspar Moura dos Santos